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Exercise 1.
We consider the following system (1) of chemical reactions for the four species A,B,C,D:

A+B
k1−→ 2B

B + 2C
k2−→ 3C

C +D
k3−→ D

(1)

a) Draw the reaction network.

b) Derive the stoichiometric net coefficients, the reaction rates, the production rates,
and the corresponding system of ODEs that describes the dynamics of the species’
concentrations denoted by nA, nB, nC , nD.

c) Show that the system has no conserved quantity that includes any of the species
A,B,C.

d) We now want to change the last reactions of the system (1) such that the whole
changed system has the conserved quantity nA + nB + nC + nD.

Write down two examples for a changed last reaction.

Show that in the changed systems nA + nB + nC + nD is conserved.

0.5+2+1+1.5 points
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Exercise 2.
The system of chemical reactions from exercise (1), can be simplified assuming constant
populations nA and nD, and the scalings x = nB

nB0
, z = nC

nC0
. The simplified system reads

dx

dt
= αx− βxz2,

dz

dt
= βxz2 − γz.

where α, β, γ ∈ R+ are some positive constants.

a) Compute the two steady states of this ODE system, including the non-trivial steady
state (xs, zs) =

(
γ√
αβ
,
√

α
β

)
.

b) Find all possible parameters α, β, γ such that the Jacobian of the non-trivial steady
state has two real eigenvalues with the same sign.

Characterise the stability behavior of both steady states for that case.

c) We now interpret the ODE system as a model for the population dynamics of a prey
species x and a predator species z.

i) What is then the physical meaning of the parameters α, β, γ?

ii) What is different with respect to the standard Lotka-Volterra model discussed in
the lectures?

iii) What process is modeled by that difference?

1+2.5+1.5 points
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Exercise 3.
We consider the scalar wave equation

∂2

∂t2
u− c ∂

2

∂x2
u = 0, c ∈ R, (2)

with constant wave velocity c.
We want to perform a linear stability analysis of equation (2) using the wave ansatz

u(t, x) = u0 · ei(kx−ωt), (3)

for wave number k ∈ R, wave frequencies ω ∈ C and amplitude u0 ∈ R.

a) What wave frequencies ω in (3) lead to a non-increasing, i.e. stable, wave in time?

b) Insert the wave ansatz (3) into the wave equation (2) to derive a stability condition for
the wave equation. Show that the stability condition is equivalent to c ≥ 0.

c) What is the physical interpretation of this stability condition and does it make sense?

1+3+1 points
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Exercise 4.
The shallow water equations for water height h(t, x) and vertical velocity u(t, x) are

∂t

(
h

hu

)
+ ∂x

(
hu

hu2 + cos(α)g h
2

2

)
= − 1

λ

(
0

u

)
, (4)

where h(t, x) and u(t, x) are the unknowns and g, λ, α are parameters.

a) What physical interpretations do the equations (4) have and what are the main ass-
umptions for their derivation?

b) Show that the system (4) can be written in the following (so-called primitive variable)
form:

∂t

(
h

u

)
+

(
u h

cos(α)g u

)
· ∂x

(
h

u

)
= − 1

λh

(
0

u

)
, (5)

c) Assume the spatially homogeneous case in which all spatial derivatives vanish, i.e.
∂xh = 0, ∂xu = 0. For this case, derive the solution of the shallow water equations
(4).

d) What problem can appear for numerical schemes trying to solve the homogeneous
shallow water equations?

1.5+1.5+1.5+0.5 points
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